Assessment of Executive Functions Skills Among First Graders in Kenya

Stephen Amukune*1, Krisztián Józsa1,2

¹ Institute of Education, SZTE, Hungary,

² Institute of Education, MATE, Kaposvar, Hungary

Outline

- Introduction
- Research Goals
- Theoretical Background of Executive Functions
- Research Gap
- Methods and procedure of data collection
- Psychometric properties of the CHEXI
- Measurement invariance
- EF Difficulties in Kenyan First graders
- Conclusion

Research goal

- (i) Determine the factor structure of *Childhood Executive Functioning Inventory* (CHEXI: Thorell, & Nyberg, 2008);
- (ii) Determine measurement invariance of the CHEXI based on gender(boys vs girls)

(iii) Executive Function skills differences of the Kenyan First Graders

Executive Functions(EF)

Theoretical Background

Cognitive abilities found in prefrontal cortex of the brain

 Composed of three components: working memory, inhibitory control and cognitive flexibility (Zelazo et al 2016)

Working Memory and Inhibition most central (Miyake et al. 2000)

Significance of EF

- critical role in
 - (i) School Readiness (Blair & Razza 2007; Morrison et al 2007)
 - (ii) mental and physical health (Zelazo et al., 2016),
 - (iii) socio-emotional competence (Rhoades et al., 2009),
 - (iv) school success (Duncan 2007)
 - (v) preschool to school transition (Barret et al 2018)
 - (vi) Job success; marital harmony, public safety and Quality of life (Bailey 2007; Eakin 2004; Davis 2010)

Research Gap

- Contradiction in literature of EF components and academic achievement (e.g. Christopher et al., 2012; Vandenbroucke et al., 2017; Blair & Razza, 2007; Lee et al., 2012).
- Role of low and high SES in EF difficulties (e.g. Cook et al., 2020)
- Over 90% done in western world (Willooughby et al.,2019)
- Assessment of EF has mainly been laboratory based
 - (Obradović & Willoughby, 2019) but not behavioural e.g.
 - 1. Childhood Executive Functioning Inventory(CHEXI),
 - 2. Behavioral Rating Inventory of Executive Functions (BRIEF)

Method

Sample and Procedures

- Stratified random sample of 526children in 27 schools (ITC, 2018) guidelines
- Strata public schools(n=15) and private (n=12)
- 20 randomly selected in class counterbalancing gender
- Age-6 to 11years (M=7.8 years, SD=1.16, 273

boys/2461 girls).

Measures

1. Childhood Executive Functioning Inventory(CHEXI)

- Developed in Sweden (Thorell & Nyberg, 2008)
- Has 24 items tapping on working memory(8 items), planning(4 items), inhibition(6 items) and regulation(6 items) (Thorell & Nyberg, 2008)
- Ratings from 1- definitely not true to 5 definitely true.
- High scores suggest high EF difficulties Camerota et al. 2018
- Validated in other cultures: Hungary (Józsa & Józsa, 2020);

US (Camerota et al. 2018); Sweden (Thorell & Nyberg, 2008)

Results

(1) Exploratory Factor Analysis (EFA)

- Principal Component Analysis and Varimax rotation
 - KMO of 0.96 (Kaiser, 1970)
 - CHEXI
 - At first the factors (Working Memory + Planning);
 Regulation, Inhibition
 - Observation of scree plot

(scree plot - 2 factors >1Eigen Value)

CIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁNYEGYETEM **'ERSITAS**

Confirmatory Factor Analysis Results

 Model fit indices fit indices : RMSEA < 0.08, TLI ≥ 0.90, and CFI ≥ 0.90 (Schreiber et al., 2006; Schumacker & Lomax, 2010).

Table 1. Model fit indices for CHEXI factor structure

Model	Model description	CMIN/DF	SRMR	CFI	TLI	RMSEA
	CHEXI factors					
1	4 Factors (WM, PLAN, INH, REG)	3.227	0.042	0.938	0.930	0.065
2	2 Factors (WM, INH)	3.864	0.046	0.914	0.930	0.064
3	2 Factors (WM, INH) w/correlated	2.972	0.041	0.950	0.940	0.027

errors

Note. CFI = comparative fit index; INH = inhibition; PLAN = planning; REG = regulation; RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual; TLI = Tucker Lewis Index; WM = working memory

2. Factor loading

- All were above 0.40 but most 0.60 (Gliner et al 2017)
 Except item 10 = 0.437
 - "Gets overly excited when something special is going to happen (e.g. going on a field trip, going to a party)
- 3. Average Variance Extracted(AVE) of 0.626 above 0.5
- 4. Construct reliability- working memory 0.934 and inhibition of 0.897

Reliability

- working memory scale (α =0.954)
- inhibition α =0.862.
- The total EF reliability of the CHEXI was 0.952.
- Total variance explained was 62% above the threshold of 30% (Bollen, 1989)

Measurement Invariance

Measurement invariance of the CHEXI across Gender

	**)	0.57	D1 (07)						
Model	X^2	CFI	RMSEA	SRMR	Model	ΔX^2	ΔCFI	ΔRMSEA	Δ SRMR
	(df)		(90%CI)		comp	Δdf			
M1	1309.5	0.903	0.056	0.058	-	-	-	-	-
Configural	(490)		(0.053 - 0.060)						
invariance									
M2	1328.5	0.903	0.055	0.069	M1	19.0	0	-0.001	0.011
Metric	512		(0.052-0.059)			(22)			
Invariance									
M3	1350	0.903	0.054	0.067	M2	22.15	0	0.001	-0.002
Residual	(534)		(0.050 - 0.058)			(22)			
Invariance									
Scalar	1626	0.894	0.060	0.08	M3	76	0.009	0.006	0.020
invariance	(558)		(0.057 - 0.064)			(24)			
	` /					` /			

a model demonstrates measurement invariance if the $\Delta CFI \le 0.01$ Cheung and Rensvold (2002),

Differences in EF skills

(ii) Inhibition

(b) Total EF skills Differences by age

SCIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁNYEGYETEM VERSITAS

Strategies to Improve EFs

Strategies to improve EF include

- 1) Cognitive training programs (Aksayli et al., 2019),
- 2) Classroom curricula that target EF (Solomon et al., 2018),
- 3) High quality instructional practices and classroom
- management procedures (Bierman et al., 2008;Raver et al., 2011).

4) martial arts, mindfulness and Montessori teaching (Diamond & Ling, 2016).

Conclusion

- Two model factor structure was retained similar to Thorell & Nyberg, 2008; Jozsa & Jozsa, 2020
- CHEXI reliable and valid in Kenyan context
- CHEXI demonstrated strong gender invariance
- Private schools have better EF skills than public schools in Kenya. The 5-6 age group in public schools is the most seriously affected category

• Thank you

References

- Aksayli, N. D., Sala, G., & Gobet, F. (2019). The cognitive and academic benefits of Cogmed: A meta-analysis. Educational Research Review, 27, 229–243.
- Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and business. Annals of the New York Academy of Sciences, 1118(1), 122–141.
- Bierman, K. L., Nix, R. L., Greenberg, M. T., Blair, C., & Domitrovich, C. E. (2008). Executive functions and school readiness intervention: Impact, moderation, and mediation in the Head Start REDI program. Development and Psychopathology, 20(3), 821–843. https://doi.org/10.1017/S0954579408000394
- Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647–663. https://doi.org/10.1111/j.1467-8624.2007.01019.x
- Bollen, K. A. (1989). Structural equations with latent variables. Wiley.
- Camerota, M., Willoughby, M. T., Kuhn, L. J., & Blair, C. B. (2018). The Childhood Executive Functioning Inventory (CHEXI): Factor structure, measurement invariance, and correlates in US preschoolers. Child Neuropsychology, 24(3), 322–337.
- Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255.
- Christopher, M. E., Miyake, A., Keenan, J. M., Pennington, B., DeFries, J. C., Wadsworth, S. J., Willcutt, E., & Olson, R. K. (2012). Predicting word reading and comprehension with executive function and speed measures across development: A latent variable analysis. Journal of Experimental Psychology: General, 141(3), 470–488. https://doi.org/10.1037/a0027375
- Cook, C. J., Howard, S. J., Scerif, G., Twine, R., Kahn, K., Norris, S. A., & Draper, C. E. (2019). Associations of physical activity and gross motor skills with executive function in preschool children from low-income South African settings.
 Developmental Science, 22(5), e12820. https://doi.org/10.1111/desc.12820

Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34–48. https://doi.org/10.1016/j.dcn.2015.11.005

- Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428
- Eakin, L., Minde, K., Hechtman, L., Ochs, E., Krane, E., Bouffard, R., Greenfield, B., & Looper, K. (2004). The marital and family functioning of adults with ADHD and their spouses. Journal of Attention Disorders, 8(1), 1–10.
- Gliner, J. A., Morgan, G. A., & Leech, N. L. (2017). Research Methods in Applied Settings: An integrated approach to design and analysis (3rd ed.). Routledge/Taylor & Francis.
- Józsa, G., & Józsa, K. (2020). A Gyermekkori (CHEXI) és a Felnőttkori (ADEXI) Végrehajtó Funkció Kérdőívek Magyar Nyelvre Történő Adaptációja. [Hungarian adaptation of the Childhood Executive Functioning Inventory (CHEXI) and the Adult Executive Functioning Inventory (ADEXI)]. Magyar Pedagógia, 120(1), 47–69. https://doi.org/10.17670/MPed.2020.1.47
- Kaiser, H. F. (1970). A Second Generation Little Jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
- Lee, K., Ng, S. F., Pe, M. L., Ang, S. Y., Hasshim, M. N. A. M., & Bull, R. (2012). The cognitive underpinnings of emerging mathematical skills: Executive functioning, patterns, numeracy, and arithmetic. The British Journal of Educational Psychology, 82(Pt 1), 82–99. https://doi.org/10.1111/j.2044-8279.2010.02016.x
- Obradović, J., & Willoughby, M. T. (2019). Studying Executive Function Skills in Young Children in Low- and Middle-Income Countries: Progress and Directions. Child Development Perspectives, 13(4), 227–234. https://doi.org/10.1111/cdep.12349
- Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Developmental Review, 41, 71–90. https://doi.org/10.1016/j.dr.2016.06.004
- Rhoades, B. L., Greenberg, M. T., & Domitrovich, C. E. (2009). The contribution of inhibitory control to preschoolers' socialemotional competence. Journal of Applied Developmental Psychology, 30(3), 310–320. https://doi.org/10.1016/j.appdev.2008.12.012
- Roth, R. M., Isquith, P. K., & Gioia, G. A. (2014). Assessment of Executive Functioning Using the Behavior Rating Inventory of Executive Function (BRIEF). In S. Goldstein & J. A. Naglieri (Eds.), Handbook of Executive Functioning (pp. 301–331). Springer New York. https://doi.org/10.1007/978-1-4614-8106-5_18

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. The Journal of Educational Research, 99(6), 323–338. https://doi.org/10.3200/JOER.99.6.323-338

Schumacker, R., & Lomax, R. (2016). A Beginner's Guide To Structural Equation Modeling. In Mahwah (Vol. 288). Solomon, T., Plamondon, A., O'Hara, A., Finch, H., Goco, G., Chaban, P., Huggins, L., Ferguson, B., & Tannock, R. (2018). A cluster randomized-controlled trial of the impact of the Tools of the Mind curriculum on self-regulation in Canadian preschoolers. Frontiers in Psychology, 8, 2366.

Willoughby, M. T., Piper, B., King, K. M., Nduku, T., Henny, C., & Zimmermann, S. (2021). Testing the Efficacy of the Red-Light Purple-Light Games in Preprimary Classrooms in Kenya. Frontiers in Psychology, 12, 633049. https://doi.org/10.3389/fpsyg.2021.633049

Zelazo, P. D., Blair, C. B., & Willoughby, M. T. (2016). Executive Function: Implications for Education (NCER 2017-2000). National Center for Education Research, Institute of Education Sciences, U.S. Department of Education. http://ies.ed.gov/.